
VIP2K rev.C Assembly and Operation
TMSI ElectroniKits

814 8th Ave N
Sartell MN 56377

leeahart@earthlink.net
http://www.sunrise-ev.com/vip2k.htm

Last update: 20 Oct 2022

Before the Apple, Atari, and Commodore home computers, Joe Weisbecker created the RCA VIP.
Introduced in 1976, it was a simple, elegant, and low cost design so that everyone could have fun and
learn about personal computers. It had an RCA 1802 microprocessor, 4k of RAM, a monitor program
in ROM, a 16-key hex keypad, a 64x128 pixel graphics video display, and a serial port to load/save its
programs on cassette tapes. That's an original RCA VIP on top of the monitor in the photo below.

For the 40th anniversary of the VIP, we decided to celebrate by making a new version you can build
yourself. That's it at the bottom of the photo, below the monitor, with its tiny keyboard on top! The
black box at the right is just the battery box, with four AA cells to power it.

The VIP2K has the same 1802 microprocessor, but with several significant upgrades in speed, memory,
and features:

 - 1802 microprocessor running at 4 MHz
 - 32K of RAM
 - 32K of ROM, with Monitor, BASIC,

and CHIP-8
 - NTSC or PAL video output displays

24 lines of 24 text characters
192 x 192 pixel graphics

 - 44-key full ASCII keyboard
 - TTL serial I/O port up to 9600 baud
 - built entirely with vintage parts and

through-hole technology
 - ...and it all fits in a 3.5" x 2" x 0.75"

Altoids tin!

This project is under development, so
things are still changing. This manual
is a "snapshot" of where we are today.

Check the website (at the link on the
top of the page) for details on operation,
and the latest software developments.

Credits: This project would not have been possible without the inspiration of Joseph Weisbecker, a true
microcomputer pioneer. Thanks also to Lee Hart for the hardware design, Chuck Yakym for adapting
his MCSMP20 Monitor, Ron Cenker for RCA's BASIC3, and Marcel van Tongeren for CHIP-8 and his
amazing EMMA 1802 emulator at https://emma02.hobby-site.com/.

1

mailto:leeahart@earthlink.net
https://emma02.hobby-site.com/
https://vintagecomputer.com/rca-cosmac-vip.html
http://www.sunrise-ev.com/vip2k.htm

Parts List
Qty Reference Description Source
 3 C1, C2, C3 capacitor 0.1uF 50v X7R 0.1"LS Jameco.com 1570161
 3 C4, C5 capacitor 4.7uF 10vdc tantalum Jameco.com 94035
 1 C6 capacitor 33uF 10vdc electrolytic Mouser.com 647-UPW1A330MDD6
 1 C7 (not used)
 1 C8 capacitor 330pF ceramic Mouser.com 594-K331K15X7RF5TL2
 3 D1, D2, D3 diode 1N4148 Jameco.com 36038
 1 D4 red LED, T1, flat top, without flange Mouser.com 696-SSL-LX30FT4ID
 1 P1a,b,P1-P4 36-pin male pin header: Cut it to make... Jameco.com 68339

2 P1a, P1b = 2-pin header (CPU J1 pins 1-2 and 29-30),
1 P1 = 2-pin header VIDEO (CPU card),
1 P2 = 6-pin header KEYROW (CPU card),
1 P3 = 10-pin header KEYCOL (CPU card),
1 P4 = 6-pin header POWER+SER (CPU card).

 2 J1a,b, J2 6-pin male/female stacking header Jameco.com 2144614
 2 J3, J4 10-pin male/female stacking header Jameco.com 2177627
 2 Q1, Q5 FJN4303 PNP transistor w. 22k/22k base resistors from me (leeahart@earthlink.net)
 1 Q2 FJN3304 NPN transistor w. 47k/47k base resistors me again (leeahart@earthlink.net)
 2 Q3, Q6 2N4401 NPN transistor Jameco.com 38421
 1 Q4 2N4403 PNP transistor Jameco.com 38447
 1 R1 10Meg 5% 1/4w resistor Jameco.com 691817
 1 R2 10K x 5 6-pin SIP bussed Mouser.com 652-4606X-1LF-10K
 1 R3 10K x 9 10-pin SIP bussed Mouser.com 652-4610X-1LF-10K
 1 R4 820 x 9 (or 1K x 9) 10-pin SIP bussed Mouser.com 652-4610X-1LF-1K
 1 R5 100K 5% 1/4w resistor Jameco.com 691340
 1 R6 270 ohm 5% (or 267 ohm) 1/4w resistor Jameco.com 690726
 1 R7 1K 5% 1/4w resistor Jameco.com 690865
 44 S1-S44 tactile switch, Alps SKHHAJA010 or eq. Mouser.com 688-SKHHAJ
 1 U1 CDP1802ACE microprocessor (NOTE 1) Alltronics.com CDP1802ACE
 2 U1s 20-pin socket strip (IC socket for U1) Jameco.com 41136
 1 U2 27C256 32k EPROM with VIP2K15.hex Jameco.com 39714 (need to program it)
 2 U2s 14-pin socket strip (IC socket for U2) Jameco.com 40328
 1 U3 CY7C199 (or equivalent) 32k RAM Jameco.com 242376
 1 U4 74HC373 octal transparent latch Jameco.com 45831
 1 U5 74HC00 quad 2-input NAND gate Jameco.com 45161
 1 U6 74HC4040 12-bit binary counter Jameco.com 45920
 1 U7 27C16 2k EPROM with 2716NTSC or 2716-PAL Jameco.com 40011 (need to program it)
 2 U7s 12-pin socket strip (IC socket for U7) Jameco.com 39351
 1 U8 74HC374 octal latch Jameco.com 45858
 1 U9 74LS145 (or 74HC145) BCD decoder Jameco.com 46666
 1 U10 74HC244 octal buffer Jameco.com 45655
 1 U11 74HC166 8-bit shift register Mouser.com 595-SN74HC166N
 1 Y1 resonator 4MHz with capacitors Mouser.com 81-CSTS0400MG03
 1 A1 speaker Goldmine-elec.com G24722
 1 VIP2K PC card & keyboard, rev.B1 www.sunrise-ev.com/vip2k.htm

NOTE 1: The VIP2K runs the 1802 at 4 MHz. The original non-A CDP1802 was specified to 2.5 MHz,
and 3.2 MHz for the later CDP1802A. This means you have to select a fast enough 1802. Some non-A
1802's are too slow; but most 1802A's easily run at 4 MHz; that's what you want.

To select a fast enough part, look at the waveform on 1802 pin 39 (/XTAL out) with an oscilloscope and
10x probe. It should be a 4MHz sine wave, 4 volts AC peak-to-peak, going from about 0.5v to 4.5v
(with VCC=5v). 4vpp is needed to clock video shift register U11. Kits include a tested 4 MHz 1802A.

2

http://www.sunrise-ev.com/vip2k.htm

VIP2K Card
Assembly

Assembly is a work in progress; so I'll just tell you how I built mine. Let me know if you find a better
way! Most parts are easy to install (just like any other kit), but I added notes for the "tricky" parts:

() Install resistors R1, R5, R6, and R7.

() Install 0.1uF capacitors C1, C2, and C3 (marked "104").

() Install 1N4148 diodes D1, D2, and D3. The end with the band must match the board.

() Install U3, U4, U5, U6, U8, U9, U10, and U11. Sockets are not supplied, but you can add them if
you like. Note that U4, U5, and U6 mount under other ICs! If you want to socket them, I suggest
socket pins (digikey.com ED5037-ND). They fit into the holes to make a "zero height" socket.

() Install transistor Q1 (marked "R4303"). Q1 fits under U7. Put its wires in the holes, with the flat
side as shown. Then bend it over so the flat side is tight against the board. Now solder it in.

() Install IC sockets for U1, U2, and U7. Use socket strips (supplied) or IC sockets. If sockets, cut
out the thin plastic bars between the left and right sides to make room for the parts underneath.

() Install SIP resistors R2 (black), R3 (black), and R4 (red). Put pin 1 on the left end for R2 and R3;
and the right end for R4. Don't mix them up – they are different values!

() Install transistor Q2 (marked "R3304"), Q3 and Q6 (marked "2N4401"), and Q4 (marked
"2N4403"). The flat sides must be positioned to match the board.

() Install 4 MHz ceramic resonator Y1.

() Install 4.7uF capacitors C4 and C5. They are polarized; the + wire goes in the hole marked +.

() Install 33uF capacitor C6. The – wire goes in the left hole (next to D3); not in the + hole!

() Install 330pF capacitor C8 (marked "331").

Headers: I supplied a 36-pin header. Cut it up to make P1a, P1b, and P1-P4:

() P1a and P1b: Install a 2-pin header at each lower corner of the card. P1a is on the left, and P1b
on the right (but there was no room to label P1a). They go on top of the board, in the holes
closest to the outer edge of the board. They serve as "feet" to support the Keyboard.

() Install P2, a 6-pin header on the VIP2K card at the KEYCOL location.

() Install P3, a 10-pin header on VIP2K card at the KEYROW location.

() Install P4, a 9-pin header on the VIP2K card at the locations labeled VIDEO – + RX TX /ON.
Remove the 3rd and 5th pins for keying (there are no holes for them on the card).

3

() Install a 2716 or 27C16 EPROM, or 28C16 EEPROM at U7. Program and label it with:
- NTSC (60Hz): Use the file at http://sunrise-ev.com/photos/1802/2716ntsc.hex
- PAL (50Hz): Use the file at http://sunrise-ev.com/photos/1802/2716-pal.hex

() Install a 27256 or 27C256 EPROM programmed with VIP2K15.HEX at U7. This file can be
downloaded at http://sunrise-ev.com/photos/1802/vip2k15.hex

() Install CDP1802ACE microprocessor U1. It must work at 4 MHz; see Note 1 on page 2.

() Install speaker A1 on top of U8 and U10. Connect it to the holes labeled "A1" with scrap wire.
The black side faces up, so it won't short to the keyboard.

Keyboard Assembly
The male/female stacking connectors (as used on Arduinos etc.) go on the bottom of the Keyboard. To
be sure the connectors line up, plug the female part onto the pins on the VIP2K board. Put the Keyboard
on top. Then solder the pins on top of the keyboard. Cut off the excess pin length.

() Install J2, a 6-pin stacking connector. Plug the female part onto KEYCOL on the VIP2K card.

() Install J3, a 10-pin stacking connector. Plug the female part onto KEYROW on the VIP2K card.

() Install J1a and J1b. I bought 6-pin connectors, and cut one down to make 2-pin connectors for
J1a and J1b. To cut it, pull out a pin with pliers, then cut the plastic body in the center of the
removed pin location with a sharp knife or diagonal cutters. Plug these onto P1a and P1b.

() Install J1+J4. I used a single 10-pin part, and removed pins 7 and 10. Plug it onto P1 (VIDEO)
and P4 (POWER/SERIAL) on the VIP2K card. The male pins are long, and not soldered to the
Keyboard. Use them to connect to your video monitor, power, and serial I/O.

() Install red LED D4 on the VIP board. The long wire goes in the left arrowhead (anode) hole.
Plug the keyboard on top to hold the LED in the hole in the keyboard. Then solder the leads.

() Install tactile switches S1-S44. Cut off the excess pin length on the back to prevent shorts.

Testing
Connect a video monitor to P1, and 5v power to P4 + and -. You should see the Starship Enterprise for
a moment, then the Monitor sign-on message. If not, try another power-on reset (CTL and RES keys).
Supply current is ~25ma with CMOS EPROMs (supplied), or ~80ma with 27xx NMOS EPROMs.

In case of difficulty, check for a 4vpp 4MHz signal on U1 pin 39 (see Note 1 on page 2). The 1802 is
cleared on power-up, then runs the program in U2. Look for
pulses on TPA, TPB and SC0 (U1 pins 34, 33, and 6). U2 has a
video interrupt and DMA handler; so check for pulses on /INT
and /DMA-OUT (U1 pin 36 and 37).

U6-U7-U8 generate video independently from the 1802. U8 pins
2-5 divide TPA by 4 to clock U6. U7 decodes the count from U6
to produce SYNC, BLANK, /DMA, and /INT signals on U8.

DMA is enabled by the TVON latch (Q1-R5-U8 bit 0). An IN6
instruction turns it ON, and IN7 turns it off. The ROM program
initially turns TV OFF until R0 and the interrupt handler are
initialized. If you are having problems debugging, ground U9 pin
9 to set TV ON=0 to disable unwanted DMAs and interrupts.

4

http://sunrise-ev.com/photos/1802/vip2k15.hex
http://sunrise-ev.com/photos/1802/2716-pal.hex
http://sunrise-ev.com/photos/1802/2716ntsc.hex

Operation

Now the fun begins! :-) The monitor displays a "Starship Enterprise" image, then signs on like this:

VIP2K Monitor Ver. 1.5
Enter "H" for Help.
>_

The >_ prompt means the Monitor is waiting for a command letter. Commands must be UPPERCASE.
Some (like H for Help or B for BASIC) act immediately. Others are followed by one or more hex
numbers (0-9 A-F), separated by a SP (space) key, then a final CR key (also called Enter or Return).
Leading zeros are not needed (so F8 is the same as 00F8). Backspace is not used; if you make a mistake
entering a number, continue to enter the corrected number and only the last 2 or 4 digits will be used. To
abort a command, type <ESC> (control-1; press and hold the CTL key, then press the digit 1 key).

H Help

Type H for a Help screen with a brief command summary. All Monitor and BASIC commands are
CAPITAL letters, so the keyboard input routine defaults to upper-case. To enter lower-case letters (for
example, in BASIC PRINT statements), press and hold down either SH (Shift) key, then enter the letter.

Enter Command letter
to see help text.
To exit HELP, press ESC

Commands are:
M reads memory
W writes memory
T transfer memory
R run program
V view 1802 registers
D disassembler
B BASIC 3 V1.1
S save program
L load program
C Run CHIP 8
I loads CHIP 8 program
A About

?_

The ?_ prompt tells you the HELP command is active. Type a key for additional help about that
command. For example, M will display more information about the Read Memory command. When
finished with Help, type <ESC> (CTL-1) to exit.

M Read Memory Maaaa bbbb <CR>

Reads bbbb bytes of memory, starting at address aaaa. For example, to read 7 hex bytes starting at
address 0100, type M100 7<CR>.

>M100 7 The Read Memory command
0100 A7 F8 FF 57 displays the address, then 4 bytes of data,
0104 C0 0D 00 and continues until 7 bytes have been displayed,
>_ or until you type <ESC> CTL-1 to abort.

5

W Write Memory Waaaa dd dd ... <CR>

Writes one or more data bytes dd into memory, starting at address aaaa, until the final <CR> (the CR
key). Separate each byte with the <space> SP key.

>W9000 00 11 22 33 44 55 The Write Memory command writes bytes to RAM.
 66 77 88 99 AA BB CC DD The screen scrolls as needed for long entries.
 DDEE FF Oops, DD is an error! Type EE to correct it.
>_ End with <CR> CR, or <ESC> CTL-1 to abort.

T Transfer Memory Taaaa bbbb cccc <CR>

Transfer (block-copy) cccc bytes from address aaaa to bbbb. All three numbers are required. Separate
each number with a <space> SP. The transfer starts at the low-address end, copies a byte, increments
both addresses, and repeats for cccc bytes. You can move overlapping blocks down. But if you move
overlapping blocks up, the aaaa block data gets repeated. This is a way to initialize memory to a known
value: For example, T9000 9001 100 will write the byte at 9000 into every byte from 9001 to 9101.

R Run Program Raaaa <CR>

Run Program at address aaaa, with P=R3 and X=R2. R3 is the Program Counter, which is set to aaaa.
R2 is the Stack Pointer, which is pointing to free RAM memory. All other registers are set to the values
shown by the V (View Registers) command.

To return to the Monitor, your program should jump to 0D1B (C0 0D 1B in hex; or LBR 0D1Bh in
assembler).

V View 1802 Registers Raaaa <CR>

The View command shows the value of all 1802 registers that were saved when the Monitor was last
entered. They will be random values on power-up, or whatever values were left there by the the last
program running when it jumped to the Monitor.

>V View registers (saved in these RAM at addresses):
1802 Register Contents register hi-addr-lo register hi-addr-lo
R0 = 0D8E R1 = 0039 R0 (E7DC-DD) R1 (E7DE-DF)
R2 = E7E1 R3 = 4090 R2 (E7E0-E1) R3 (E7E2-E3)

R4 = FFFF R5 = 2FF2 R4 (E7E4-E5) R5 (E7E6-E7)
R6 = 81A2 R7 = FEF9 R6 (E7E8-E9) R7 (E7EA-EB)

R8 = 0264 R9 = E7CE R8 (E7EC-ED) R9 (E7EE-EF)
RA = 81A1 RB = 81DF RA (E7F0-F1) RB (E7F2-F3)

RC = 225B RD = 3B02 RC (E7F4-F5) RD (E7F6-F7)
RE = 010D RF = 9701 RE (E7F8-F9) RF (E7FA-FB)

RC = 225B RD = 3B02 RC (E7F4-F5) RD (E7F6-F7)
RE = 010D RF = 9701 RE (E7F8-F9) RF (E7FA-FB)

PC = F X = F P (E7FC) X (E7FD)
T = FF D = FF T (E7FE) D (E7FF)

DF = 1
>_

6

The View command actually shows the register values saved in RAM. You can change the saved
register values with the W (Write) command, using the addresses shown above. These new values will
then be loaded into the 1802 registers when you use the R (Run) command.

Precautions: Only change the values of registers R0-R5 with great care! They are being used by the
Monitor, so if you modify them, you may not be able to return to the monitor without a cold reset!

R0 is used as the DMA pointer for the video display.
R1 points to the interrupt handler, which is scanning the keyboard and display.
R2 is the stack pointer.
R3 is your program counter for the RUN command.
R4 points to the SCRT "Call" subroutine
R5 points to the SCRT "Return" subroutine

D Disassemble 1802 Opcodes Daaaa bbbb <CR>

Disassemble 1802 opcodes from starting address aaaa to ending address bbbb. Each line displays an
address, the opcode at that address, and its assembler mnemonic, along with any data bytes the
instruction needs. Example:

>DC9 CE Disassemble memory from 00C9 to 00CE:
00C9 F8E8 LDI E8 Load Immediate E8 into D
00CB B7 PHI R7 ...and Put it in the High byte of Register 7
00CC F800 LDI 00 Load Immediate 00 into D
00CE A7 PLO R7 ...and Put it in the Low byte of Register 7
>_ Abort a long disassembly with <ESC> CTL-1

If the ending address bbbb is 0 or equal to or less than the starting address, the Disassembler enters
Single-Step mode. It will disassemble one instruction, and then wait. Press <CR> (the CR key) to
continue, or <ESC> (CTL-1) to abort.

>DC9 0 Disassemble from 00C9 in Single-Step mode:
00C9 F8E8 LDI E8_ Load Immediate E8 into D (press CR to continue)
00CB B7 PHI R7_ ...and Put it in the High byte of R7 (CR to continue)
00CC F800 LDI 00_ Load Immediate 00 into D
Function Aborted Press <ESC> CTL-1 to abort
>_

For fun, you can disassemble the entire 1802 opcode-mnemonic table with the command D7700 7826.

B run BASIC3 B <CR>

The B command starts RCA's floating-point BASIC3 interpreter. It will display its sign-on message, and
ask you whether you want to do a Cold or Warm start.

>B Start BASIC3.
WELCOME TO THE 1802 The sign-on message.
RCA BASIC3 V1.1
(C)1981 RCA Press C for a "Cold" start (the first time BASIC is
C/W? started), or W for a "Warm" start (to re-start BASIC
_ when you already have a program in memory).

7

BASIC3 will respond with READY and its ":" prompt. BASIC is now running and ready for your
commands and programs. Here is a quick example:

READY BASIC3 is now running.
:10 PRINT 355/113 Enter a BASIC program (hint: the / sign is CTL-9).
:20 END Note that BS (the Backspace key) now works. :-)
:RUN Run your program.
3.1416 Here's the result (it's approximately Pi).
READY Ready for more...
:BYE BYE exits BASIC and returns to the Monitor.

Here is a brief summary of BASIC3 commands. For a complete list of commands and operating details,
see the BASIC3 User Manual at http://sunrise-ev.com/MembershipCard/BASIC3v11user.pdf

 RCA BASIC3: Keywords are UPPER CASE. LIST to view, NEW to erase, BYE to exit.
┌───────────┬───────────────┬───────────┬─────────────────┬───────────────────┐
│ Commands: │ Definitions: │ Controls: │ I/O: │ Math: (n=number) │
│ BYE │ DEFINT FIXED│ END │ DMAPT(n) │ ABS(n) LOG(n) │
│ CLD │ DEFUS LET │ EXIT │ EFn │ ATN(n) MEM │
│ CLS │ DEG RAD │ GOSUB │ INP(0,port) │ COS(n) QST │
│ DISINT │ DIM REM │ RETURN │ INPUT │ EOD PI │
│ EDIT ├───────────────┤ GOTO │ OUT(0,port,n) │ EOP RND(n) │
│ ENINT │ Data: │ WAIT(n) │ PEEK(n) │ EXP(n) SGN(n) │
│ FORMAT │ DATA │ IF │ POKE(addr,n) │ FNUM(n) SIN(n) │
│ LIST │ READ │ THEN │ PRINT PR │ INT(n) SQR(n) │
│ NEW │ RESTORE │ FOR │ QST STQ │ INUM(n) │
│ RENUMBER ├───────────────┤ TO ├─────────────────┤ MOD(n1,n2) │
│ RUN │ File: │ STEP │ Math operators: ├───────────────────┤
│ RUN+ │ PLOAD │ NEXT │ + - * / ^ │ String: $="string"│
│ TRACE │ PSAVE │ │ Logical: │ ASC($) │
├───────────┴───────────────┴───────────┤ AND OR XOR NOT │ CHR$(n) │
│ Machine language: sets R3=addr, P=3, │ Relational: │ FVAL($) │
│ CALL(addr,n1,n2) X=2, R8=n1, RA=n2; │ = > < <> >= <= │ LEN($) │
│ return with SEP R5 │ Hex: #FF = 255 │ MID($,start,n) │
│ v=USR(addr,n1,n2) same, but sets v=R8│ @FFFF = 65535 │ TAB(n) │
└───────────────────────────────────────┴─────────────────┴───────────────────┘

S Save Program Saaaa bbbb <CR>

The S (Save) command outputs bbbb bytes of memory, starting at address aaaa to the serial port. The
output is in Intel hex (I8HEX) format, which is an ASCII text file with a checksum on each line. A PC
or other serial device can display, print, or store this file on its disks. The saved file can be loaded later
with the L (Load) command.

The default serial data rate is 9600 baud, 8N1 (1 Start, 8 data, no parity, 1 stop). The baud rate is stored
in address E7CE, and can be changed with the Monitor W (Write) command, or BASIC POKE command.
Note: Entering the Monitor from BASIC will reset the serial port back to 9600 baud.

>ME7CE 1 Read the current baud rate.
E7CE 0D 0D = 9600 baud (the default).
>WE7CE 19 19 = 4800 baud (change to 4800 baud)
>WE7CE 35 35 = 2400 baud (change to 2400 baud)
>WE7CE 68 68 = 1200 baud (change to 1200 baud)
>_

8

http://sunrise-ev.com/MembershipCard/BASIC3v11user.pdf

Set up your PC serial port and Terminal program before starting the SAVE command, so it is ready and
waiting for data. Then enter the S (Save) command. Note: <ESC> does not abort a SAVE command.

>S8000 400 Save 400 bytes of memory starting at 8000.
Ready to SAVE Program This message is BRIEFLY displayed...

Then the screen goes blank while sending the data.
File Saved Successfully This message is displayed when done sending.
>_

L Load Program L <CR>

The L (Load) command receives an Intel hex (I8HEX) format file on the serial port, and loads it into
memory. The file format is the same one produced by the SAVE command. Intel hex files includes the
starting and ending addresses, so these do not need to be supplied.

Set up your PC serial port and terminal program before starting the LOAD command. Use the program's
"send" or "ASCII upload" command to select the file to send. Then enter L to start the Load process.
Note: <ESC> on the VIP2K will not abort during the LOAD command; but you can type <ESC> on your
PC to abort loading.

>L Load an Intel hex file...
Ready to LOAD Program This message is BRIEFLY displayed...

Then the screen goes blank while receiving data.
Tell your PC to start sending data.

File Loaded Successfully This message is displayed when sending is finished.
>_ (or an error message if unsuccessful).

The default data rate is 9600 baud, but it can be changed as described for the S (Save) command.

Your PC must limit the speed that it sends data. This is typically called "Pacing", "Character delay", or
"Transmit speed limiting". You will have to experiment to see how much delay is needed. In Realterm
for example, set "Delays" in the "Send" tab to 5 for 9600 baud, 10 for 4800 baud, 15 for 2400 baud, or
20 for 1200 baud. Note that many USB-serial adapters defeat the pacing your terminal program adds.

C run CHIP-8 C <CR>

CHIP-8 is a simple, easy-to-learn interpreter, like BASIC. While BASIC is optimized for text, CHIP-8 is
optimized for graphics and games. It was written in 1976 by Joe Weisbecker for the original RCA VIP
and its 1861 video chip, but has been adapted to run on many other systems. Marcel van Tongeren wrote
this version for the VIP2K. See Wikipedia https://en.wikipedia.org/wiki/CHIP-8 and the CHIP-8 tutorial
at https://github.com/JohnEarnest/Octo/blob/gh-pages/docs/BeginnersGuide.md for more information.

Any VIP CHIP-8 program should run on the VIP2K, but with some speed differences due to the faster
1802 and higher screen resolution. Sound support is missing. Enhanced versions such as CHIP-8X,
SCHIP, CHIP-10, Chip ETI600, Chip8 Hires, and CHIP-8 using 1802 subroutines are not supported.

A CHIP-8 program must be loaded by hand, or with the I command before you run CHIP-8 itself. If no
CHIP-8 program loaded, the C command says No CHIP-8 File Loaded and returns to the Monitor.
To load a CHIP-8 program manually, enter its hex opcodes with the W command at address 8200 hex:

>W8200 XX XX XX XX XX XX … Each opcode, with space between, <CR> to end.
>WFEFD 80 Set the "CHIP-8 program loaded" flag.
>C Now use the C command to run CHIP-8.

9

https://github.com/JohnEarnest/Octo/blob/gh-pages/docs/BeginnersGuide.md
https://en.wikipedia.org/wiki/CHIP-8

I Input CHIP-8 program I <CR>

The I (Input) command loads a CHIP-8 program in the same Intel Hex (I8HEX) format as the L (Load)
command. The only difference between the two is that I (Input) also sets a flag to indicate that a CHIP-8
program has been loaded.

Sample CHIP-8 programs can be downloaded at http://sunrise-ev.com/photos/1802/c8games.zip
This is a ZIP file containing a couple dozen games, which you will need to unzip. They are in Intel hex
(I8HEX) format, already set for the correct load address set.

Choose a game, and set up your PC serial port and Terminal program to send it in "text" mode as
described for the L (Load) command. Then load it with the I command...

>I Load a CHIP-8 Intel hex file...
Ready to LOAD Program This message is BRIEFLY displayed...

Then the screen goes blank while waiting for data.
Tell your PC to start sending data.

File Loaded Successfully This message is displayed when it's been received.
>MFEFD 1 Let's check the "CHIP-8 Loaded" flag at FEFD.
>FEFD 80 It will be 80 if successful (or 00 if unsuccessful).
>C NOW you can use the C command to run CHIP-8.

CHIP-8 Operation

Keyboard commands while CHIP-8 is running:

CTL-Q Quit CHIP-8 and return to the Monitor. The CHIP-8 "Loaded" flag is set to 00
CTL-1 to CTL-9 Set CHIP-8 speed (where 1 is the slowest, 9 is the fastest)

CTL-K Reset keyboard map to the default
CTL-R Reset CHIP-8 interpreter
CTL-S Reset CHIP-8 interpreter in SMALL screen mode (2x4 pixels)
CTL-L Reset CHIP-8 interpreter in LARGE screen mode (3x6 pixels)

The SMALL screen mode updates faster, and is recommended for programs with a "busy" screen.

Keyboard Map: The original VIP had a 4x4 keypad labeled 0-9, A-F. The VIP2K has the same keys, but
in different positions. Many CHIP-8 programs ignored the key labels and simply used the key positions
to select game functions (up / down / left / right / fire). So the VIP2K also maps I=up (2), J=left (6),
K=right (6), M=down (8), and SP=fire (5) as used by VIP games.

	^				slowest						fastest				
1	2	3	C		1	2	3	4	5	6	7	8	9	0	
<	fire >		quit		reset			^							
4	5	6	D		Q		E	R				I			
	V					small				<	> large				
7	8	9	E		CTL	A	S	D	F			J	K	L	
												V			
A	0	B	F					C		B		M			
 RCA VIP keypad VIP2K keyboard |fire| red=game functions
red=game functions running CHIP-8 | SP | blue=CTL functions

10

http://sunrise-ev.com/photos/1802/c8games.zip

The key map table is in RAM at FF00-FFAF. It can be changed to suit each game, and loaded as part of
the game Hex file itself. Here are some typical locations:

FF0A J key code
FF0B M key code
FF11 I key code
FF12 K key code
FF1B <SP> key code
FFA8 game speed value
FFA9 screen size

CHIP-8 Memory Map

8000-81FF Normally not used, but available for CHIP-8 code
8200-8FFF CHIP-8 user space

E800-EC77 Video RAM in LARGE 3x5 pixel format:
E800-E84D - Top 3 lines; not used by CHIP-8 (should always be 0)
E84E-EB8D - CHIP-8 video screen
EB8E-EBF5 - Bottom 4 lines; used for some games like Pong
EBF6-EC77 - Bottom 5 lines; not used by CHIP-8 (should always be 0)

E800-ED95 Video RAM in SMALL 2x4 pixel format:
E800-E8CF - Top 8 blank lines; not used by CHIP-8 (should always be 0)
E8D0-EC0F - CHIP-8 video screen
EC10-ECF9 - Bottom 9 lines; used for some games like Pong
EBFA-ED95 - Bottom 15 blank lines; not used by CHIP-8 (should always be 0)

FEFD CHIP-8 Loaded flag (00 if not loaded, 80 if CHIP-8 program is loaded)
FF00-FF9F Keyboard mapping table
FFA0-FFA4 CHIP-8 identifier text ("CHIP8")
FFA8 Speed, 0-30 hex, in steps of 6
FFA9 Screen resolution; 0=large 3x5 pixels, not 0=small 2x4 pixels
FFB2-FFCF Jump table for CHIP-8 instructions
FFE0-FFEF CHIP-8 variables V0-VF
FFF0-FFF3 Graphic scratchpad area
FFF9 Keyboard code
FFFA CHIP-8 counter. Counts down to 0 from value set by CHIP-9 instruction

Differences in CHIP-8 instructions

Original VIP CHIP-8 VIP2K CHIP-8

User Space 0200-0EFF 8000-8FFF (starting address is 8200)
00aa, SYS 0aa Call 1802 system routine at 70aa
0aaa, SYS aaa Call 1802 system routine at aaa Call 1802 system routine at 8aaa (aaa>0FF)
1aaa, JP aaa Jump to address aaa Jump to address 8aaa
2aaa, CALL aaa Call subroutine at aaa Call subroutine at 8aaa
Aaaa, LD I,aaa I = aaa I = 8aaa
Baaa, JP V0,aaa Jump to address aaa + V0 Jump to address 8aaa + V0
Fx18, LD ST,Vx Sound timer = Vx NOP

11

Appendix A -- Circuit Diagram

vip2kc-sch1.png

12

vip2kc-sch2.png

13

Appendix B -- Keyboard layout and Key Codes

!
ESC 11h

1

@
 , NULL

2

#
 ; 1Ch

3

$
 ? 1Dh

4

%
 : 1Fh

5

^
 + 1Eh

6

&
 –

7

*
 *

8

(
 /

9

)
 =

0

Back-
space

BS

q
"

Q

w
 ` 17h

W

e
 ~ 05h

E

r
HT 12h

R

t
 14h

T

y
 19h

Y

u
VT 15h

U

i
 | HT

I

o
 ' 0Fh

O

p
DEL 10h

P

control

CTL

a
 \ 01h

A

s
 _ 13h

S

d
LF 04h

D

f
 [06h

F

g
] 07h

G

h
STX BS

H

j
 { LF

J

k
 } VT

K

l
BS FF

L

CR
CapLock

CR

Shift

SH

z
 1Ah

Z

x
 18h

X

c
FF 03h

C

v
 16h

V

b
 STX

B

n
 0Eh

N

m
 < CR

M

>
 >

.

Shift

SH

Space

SP

ASCII hex common
 name code function
------- ------ ---------- KEY
NULL 00h idle
STX 02h Shift Control+Shift
BS 08h backspace
HTAB 09h tab Control Normal
LF 0Ah line feed
VT 0Bh vertical tab
FF 0Ch form feed CTL + RES does a hardware RESET of the 1802.
CR 0Dh carriage return CTL + CR toggles the CAPS lock mode (and its LED) on/off.
ESC 1Bh escape CTL + 1 is the ASCII "Escape" key.
SP 20h space The SH (shift) and CTR (control) keys return no code on their own.
DEL 7Fh delete Blank positions return a value of 00h (NULL).

14

!
ESC 11h

1

RES

