A CRASH COURSE IN COMPUTING on the Z80 Membership Card by Crash Kernigan *

So you got it built; now you want to see it **WORK**! This "Quick Start" section will get you going fast. Don't worry about breaking anything. If it crashes, just turn it off and back on again, and everything will be fine.

To use the Z80-MC CPU card alone (no Front Panel card or SIO card), see <http://sunrise-ev.com/photos/z80/Z80MC-2017.pdf> for more details. Otherwise, plug the Front Panel card on top of the Z80 Membership Card. **BE SURE TO GET THIS RIGHT**! Plugging them together backwards or off by a pin is an expensive mistake! To make sure, there is a broad white stripe next to J2 and P2 on both boards.

Next, it needs power. Any well-filtered source of +5v to P1 **0** C +9v DC that can supply about 250 milliamps will do. Connect d1 d2 d3 d4 d5 d6 d7 J2 <----FRONT PANEL CARD POWER power as shown below; Positive POWER to "+", and negative +5 to +9vdc ΟΤΙ (striped edge) GND to "-" on the 6-pin header on the Front Panel card. | **O** R | **| || || || || || ||** '----0 + | I_||_||_||_||_||_||_| **P2** | <--Z80 CPU CARD ZVM v1.5 Monitor -- Keypad/LED Command Summary 0 (striped edge) **--0** - | Command Key Parameters Key GND x7 x6 x5 x4 x3 x2 x1 Register 1-D select Register to view (1=SP, 2=AF, 3=BC, etc.) \ Beep 0 run Program at current PC Run 4 Go |Register / / \backslash 5 In xx read Input port xx Memory / \ Monitor xxyy write yy to Output port xx 6 Out moDify Output 7 Step Execute 1 instruction at PC Examine xxxx Examine memory at xxxx Е Advance <u>Step</u> | IR| | IX| | IY| | AF'| Once a Register, Memory, or I/O command starts: 8___ 9__ | 7 | A____ move Ahead one location **A** Advance move Back one location в Back Out Go In Back moDify xx change current location | DE| | HL| | PC| | BC'| D or xxyy 2 or 4 digits based on destination size 4 | 5 | 6 | B | F+E Soft Reset jump to Monitor (Warm boot) F+0 Hard Reset reset Z80 (Cold boot) | SP| | AF| | BC| | DE'| | 1 | 2___ _3__ | C | Notes: xx and yy are any hex digits 0-9, A-F. |Re<u>gist</u>er <u>Shif</u>t M<u>emor</u>y moDify Commands continuously show the last location accessed. | HL'| Incomplete commands time out in 3 seconds; so just wait 3 seconds to abort. | 0 | | F | E | D | F is also a Shift key: Hold F down, then press 0 for a Hard, or E for a Soft reset. \Hard/ \Soft/ Reset Reset Figure 1. * OK, true confession time. It's actually written by Josh Bensadon and Lee Hart. Keypad/LED Monitor But this is how Crash would have done it, if he existed outside of our heads.

KEYPAD/LED MONITOR

On power-up, the display shows COLd OO. This means the system was COLD booted (reset). The 00 means it's the first time since power-up. This number will increase by one each time the Z80 is reset. Annunciator LED x3 is on because it is in *Monitor* mode.

There are two modes: Monitor and Run. Monitor lets you examine and modify RAM, CPU registers, and I/O ports. Run executes programs in memory.

There are nine keypad commands (plus two "oh shit!" Resets). Pressing a key starts that command. Most commands expect number(s) after the command. Once a command starts, enter numbers with <u>less than 3 seconds between keys</u>, or it times out and ends the command.

Examine memory	Press E FFF1	Display shows the address and its contents. Address FFF1 is the high byte of the "tick" counter, so the 23 will actually be counting up in real time.	FFF1 23
Advance to next	Press A	Advance to next address and show its contents.	FFF2 34
<u>Backup to previous</u>	Press B	Backup to previous address and show contents. Use ${f A}$ and ${f B}$ as many times as you like to move around.	FFF1 56
moDify RAM	Press E Press D Press 2 hex digits Press 2 more digits	First, E xamine the location you want to change. LEDs x5 and x6 light to show you will mo D ify Memory. Each digit pair is a byte that is written into RAM. The add To modify successive locations. Wait 3 seconds to end the d	dress then advances to the next location. command.

RAM is located at 8000-FFFF. Obviously, you can't change ROM (Read Only Memory), which is at 0000-7FFF. Let's enter a simple program: JP SELF (Jump on Self... ouch!) The opcode for JP is C3. We'll enter it at address 8000, so the next two bytes are 00 and 80. The Z80 is a "little endian" CPU, which means it stores the lower byte in the lower memory address. (Don't change FA00-FFFF; they're used by the monitor.)

Press	E 8000	to ${f E}$ xamine address 8000 (initially some random number nn). 8000 n	n
Press	D	mo D ify mode. LEDs x5 and x6 light.	
Press	C3	Change 8000 to C3. Display advances to next.	
Press	00	Change 8001 to 00. Display advances to next.	
Press	80	Change 8002 to 80. Wait 3 seconds to end the command.	
Press	ввв	Prove it worked by examining the contents of 8000-8002. 8000 C	3
Press	A	The easy way is to press B a few times to Backup to 8000, 8001 O	0
Press	A	then A to Advance and see what's in 8001 and 8002 as well. 8002 8	0

To run a program, first we have to point the PC register (Program Counter) to it. Then we switch to RUN mode to run it!

<u>Examine Register</u>	Press 0 6	to view Register PC (nnnn is the value of PC at the moment).	PC nnnn
<u>Modify Register</u>	Press D 8000	mo D ify it to 8000 (if it wasn't already there)	PC 8000
		Wait 3 seconds for the command to time out.	

Run Mode Press 4 LED x2 turns on (Run mode) and x3 turns off.

It's now running your program! The PC is displayed; but not changing. That's because it's a 1-instruction program! Let's return to Monitor mode, and enter a bigger program so we can see it do something.

Monitor Mode Press and hold F, then press E X2 turns off, x3 turns on, and display shows SoFt 01

This switches back to **Monitor** mode. The display shows you got here with the keypad (a "soft reset"), and the number of soft resets since powerup. (If you're already in Monitor mode, pressing F-E shows F-E nn.) Here's the program we'll enter in the format used by an "assembler":

<u>addr</u>	<u>data</u>	<u>assembler</u>	<u>mnemonics</u>	<u>comments</u>
8000	3C	HERE: INC	A	; increment register A
8001	C2 00 80	JP	NZ,HERE	; jump here (i.e. to 8000) if A is not 0
8004	03	INC	BC	; increment register BC
8005	C3 00 80	JP	HERE	; jump to "here" (so it repeats forever)
	Press E 80 Press D 3C Press 0 6	00 C2 00 80 0	3 C3 00 80	Enter this program: Examine memory address 8000. moDify it to enter the program. Hint: Use A and B to check for mistakes. Check that Register PC is still at 8000. If not, set it to 8000 as described above.

Now, does it work? Let's see...

Single StepPress 7 7 7 7 ...Go to Run mode, execute one instruction, then return to Monitor mode.
Each time you press Single-Step, one step of the program is executed. Hold it down to auto-repeat
about twice per second. Since it is displaying the PC, you will see it step from 8000, 8001, 8000,
8001... Single-Step can trace programs in ROM as well as RAM. That's quite a useful trick!

Whatever you are viewing when you **Step** or **Run** will continue to be viewed after the step. This means you can watch any Memory location, Register, or Input port change as you **Step** or **Run** a program.

	Press 0 2 Press 7 7 7 7 Press 4 Press 0 3	To view Register Every 2nd step, Switch to <i>Run</i> mo View Register BC	AF (A and its Flags). see A get incremented (as it executes the IN de. Now the AF display counts up too fast to . It is counting up 256 times slower than A;	C A instruction). read. but still very fast!
<u>Examine Input Port</u>	Press 5 12	Read Input port (Note: There <u>is</u>	12. no Input port 12, so this displays "air".)	in12 78
Modify Output Port	Press 6 12 34	Write 34 to Outp (Likewise, there	ut Port 12. <u>is</u> no port 12, so nothing visible happens).	ou12 34
<u>Hard Reset</u>	Press and hold F , the	n press 0	Reset Z80, and show # of resets.	F-0 nn

This resets everything, just as if you had removed power, and powered it up again. It works even if the Z80 is not responding to interrupts or your program has crashed. (nn is just counting the number of times you hit F-0.

SERIAL TERMINAL MONITOR

The ZMC ROM has a second monitor. It works with a serial terminal to give you a full-size keyboard and display. It works with just about any device that can send/receive serial data. You can use a real RS-232 data terminal; or a computer with a serial port; or a computer with a USB-to-serial adapter. If you're using a PC/Mac/Linux computer, you'll also need to run a terminal emulation program like HyperTerminal (Windows), MacTerminal (Mac), etc. There are two ways to hook it up (A and B):

They say a picture is worth a thousand words (2k bytes); so here are screen dumps of the commands. The parts you type are **BOLD**. My comments are on the right.

Commands can be entered in upper or lower case. All numbers are typed and displayed in hexadecimal. Leading zeros are assumed (so typing address "55" is treated as "0055"). Only the last 4 digits are used; so mistakes can be corrected by simply typing the correct value after the wrong one (for example, mis-typing "220" is corrected to "0230" in the **Dump memory** command below).

Cold Start Z80 MEMBERSHIP CARD MICRO-SD, V1.5beta July 23, 2017 HARDWARE: 01 FP Main Menu > Main Menu >d 2200230 23f M0230 OD 0A 43 6F 6C 64 20 53 74 61 72 74 OD 0A 00 0D ; ...Cold Start.... Main Menu > Main Menu >c 230 43f M0230 OD 0A 43 6F 6C 64 20 53 74 61 72 74 0D 0A 00 0D ; ...Cold Start.... M0240 0A 53 6F 66 74 20 52 65 73 74 61 72 74 00 0D 0A ; .Soft Restart... M0250 53 74 65 70 00 0D 0A (I aborted it at this point) Soft Restart 02 AF=0045 BC=FF00 DE=0FFF HL=02A4 AF'=0000 BC'=0000 DE'=0000 HL'=0000 IX=0000 IY=0000 IR=001F PC=DAFF SP=FF59 Main Menu > Main Menu >e 8000 8000 : 12 **c3** C3 8001 : 34 00 00 8002 : 56 **80** 80 8003 : 78 **<esc>** Main Menu >

Main Menu > m8000 3c	; inc a	Same little program as before.
m8001 c2 00 80	; jp nz, 8000	Note that anything after a ";"
m8004 03	; inc bc	is ignored, so you can even
m8005 c3 00 80	; jp 8000	load an assembly listing.

<u>Cold Start</u> - The opening screen

Version number (and the output of the "Version" command) This means the Z80 sees one extra card (the Front Panel) ZMC prompt, when it's ready for your input

Dump memory D <StartAddr> <EndAddr>

Dumps memory in ASCII format. Each line starts with M, then the address, up to 16 data bytes in hex, a semicolon, then the same bytes in ASCII (or a dot if it's not a printable character). Spaces are included for readability. **D** pauses and waits for a key after each page (so data won't scroll off the screen too fast to read). Press <Esc> to abort.

<u>Continuous dump memory</u> C <StartAddr> <EndAddr>

C is the same as **D**, but does <u>not</u> pause. Use **C** to print or capture a Dump on tape or disk. The format is the same as the M command, so you can "play it back" to reload saved data back into memory without having to type the M command.

Press F, then 0 on the keypad to abort a long listing. "Soft Restart" and the register contents will be displayed.

Edit bytes in memory E <StartAddr>

The current address and its contents are displayed. Type the new value (C3 for example). The contents are then displayed again to see if it wrote, and the address is incremented. Note: C3 00 80 is the same as "JP 8000" used in the earlier example. Press <Enter> or the <Esc> key when done.

Memory load M <StartAddr> <lstByte> <nextByte>... Like E, but doesn't show memory contents before or after your entry. The M command automatically loads ASCII dumps created by the C or D command. The "Main Menu >" prompt is suppressed, but the monitor is ready for the next command after each line. Hint: If your terminal sends too fast, enable "pacing" (try 100 msec/line, 2 msec/char).

<Ctrl>-C 02 AF=0045 BC=0000 DE=D800 HL=2000 AF'=BFBD BC'=BDFF DE'=FFFF HL'=FDBF IX=AFFF IY=FFFF IR=0076 PC=8000 SP=FF5A Main Menu > Main Menu >w Step 01 AF=0045 BC=0000 DE=D800 HL=2000 AF'=BFBD BC'=BDFF DE'=FFFF HL'=FDBF IX=AFFF IY=FFFF IR=0076 PC=8000 SP=FF5A Main Menu > Main Menu >r AF=FFFF BC=BFBD DE=FFFF HL=FFFF AF'=BFBD BC'=BDFF DE'=FFFF HL'=FDBF IX=AFFF IY=FFFF IR=001B PC=8000 SP=FF5E Main Menu >r b? Main Menu >r BC BC=BFBD Main Menu >r BC=1234=1234 Main Menu > Main Menu >I FF 00 Main Menu >0 FF 11 Main Menu > Main Menu >L Hello, world! <esc> Main Menu >T 80 F9 TESTING RAM RAM PAGE MARCH PASSED RAM BYTE MARCH 1 PASSED RAM BYTE MARCH 2 PASSED RAM BIT MARCH PASSED

Main Menu >**g 8000** PC=8000

RAM SEQUENCE TEST PASSED

<u>Go execute program</u> G <Addr> Go to Run mode; your program is now running!

<u>control-C (Soft Reset)</u> returns to Monitor mode, and displays all the registers so you can see what it was doing.

Watch executionSexecute ONE instruction at PC, shows number of steps so far,and displays registers so you can see what it did.

Register examine or modify R <Register>=<Value>
R alone shows all registers.
R followed by a register name shows its contents.

Register names are CASE SENSITIVE, so use "B", not "b".

Follow register name with "=value" to change it.

Input port read I <port> Read Input port and show its contents (i.e. port FF is 00). (Note: Since there is no port FF, this just displays "air".)

<u>Output port write</u> O <port> <byte> Output 11 to port FF. (This also does nothing, since there is no port FF.)

Loop back test L Anything you type is simply echoed back to the screen and to the Front Panel LEDs. <Enter> starts a new line, and <Esc> ends the command. Use L to test your serial connection, or to see what ASCII looks like on a 7-segment LED display.

Tests RAM from 8000-F9FF. Don't test RAM pages FA00-FFFF; they're used by the monitor. Patience, grasshopper: The entire battery of tests will take about 15 minutes to complete.

T <StartPage> <EndPage>

Test RAM

Main Menu >V Z80 MEMBERSHIP CARD MICRO SD, v1.5 beta July 23, 2017 HARDWARE: 01 FP Main Menu >

HEX file transfers

VersionVShows the ZMC monitor ROM version number,and what extra cards are plugged in.

Here's the easiest way to upload a program: Have your terminal send it as an Intel HEX file. These are produced by most assemblers. It includes the load addresses, the bytes to load, and checksums for error checking. It's just a simple ASCII text file, so it's easy to send. In HyperTerminal, click Transfer... Send Text File.

Intel Hex format starts each line with a colon. This colon is the Monitor's command to receive a hex file. You don't have to type this colon; just upload and watch. :-)

Main Menu >:188C840056D3F808F556D38EF63BD5F801F456F880AED38EFE3BD5F82D	Upload Intel HEX file H
:188C9C0001F556F80130D5F8FCA796B7E7F805BDF8ADF4F4ADF8F5A620	Just send a hex file. It starts each line with a ":",
:188CB400E672AE93BC4DACDC4DACDC8E2656D4F800BC300BF801BCF82F	so you don't need to type anything.
:188CCC00F5A6E672AE9BBFF0AFEF8EF3BE8EF23A1F15159C3A249E5FCE	
:188CE400D49BBAD4455AE58AF4AA159A7C00BAD445A60A56302A45A686	
:188CFC00065A302A2AD4F814AFF8005A1A2F8F3A45D40309010300015F	
:188D140009020708090100030102030001020203030400FCFCFCFCFC1F	
:188D2C00FCFC722222224742427208152532598EE0A0E004070217063D	
:068D44003F0817040800BF	
:0000001FF	This is normally the last line, which ends the command.
	If it's missing, wait 10 seconds or press the <esc> key</esc>
HEX TRANSFER COMPLETE ERRORS=00	no errors (good!)
Main Menu >	

XMODEM file transfers

HEX file transfers are easy, but slow. Here's a faster way to save and restore your work. XMODEM is a classic binary file transfer protocol that includes error checking. This version works with either Checksum or CRC error checking, and will auto-detect and auto-negotiate this.

Main Menu > x d 8000 fc	XMODEM Download	X D <startaddr> <#blocks></startaddr>
	Send data FROM Z80 TO your	terminal. Each block = 128 bytes.
TRANSFER COMPLETE	This example sends a copy	of all RAM from 8000 to FDFF.

This example sends all of RAM (8000 to FDFF) except for the top two pages (FExx and FFxx), which are used by the Monitor. It is pointless to save them, and it will crash the stack if you restore them (Cold Boot time...)! XMODEM sends 128-byte blocks. 8000-FDFF is 126 256-byte pages, which is 252 128-byte blocks, which is FC hex blocks.

To receive this download, your terminal needs a program that supports the XMODEM format. Luckily, just about every modem program made in the last 40 years has it. Here's an example using HyperTerm:

1. Type the command **x** d 0 8000 fc as shown above. The Z80MC is now ready to send data.

2. Within 2 minutes (before the command times out):

- Click Transfer... Receive File...
- Select Xmodem (not 1K Xmodem) from the drop-down list,
- Select the filename to receive,
- Then click Receive.
- 3. The transfer will complete automatically. Or to cancel it, type <Ctrl>-X.

Main Menu >**x u 8000**

XMODEM uploadX U <StartAddr>Receive data FROM Terminal TO Z80.This receives the above RAM image and loads it at 8000-7DFF.

TRANSFER COMPLETE

This example receives the same blocks of data sent in the previous example, and loads them into RAM starting at 8000. You don't need to specify the number of blocks here, as it is set by the sending program (your terminal).

Here's an example for uploading this file using HyperTerm:

- 1. Type the command **x u 8000** as shown above. The Z80MC is ready to receive data.
- 2. Within 2 minutes (before the command times out):
 - Click Transfer... Send File...
 - Select **Xmodem** (not 1K Xmodem) from the drop-down list,
 - Select the filename to send,
 - Then click Send.
- 3. The transfer will complete automatically. To cancel it, type <Ctrl>-X.

Micro BASIC

Micro-BASIC is a fast integer BASIC interpreter by Dave Dunfield (included with his permission). BASIC commands must be CAPITAL letters (so press your CAPS LOCK key). The manual is at http://www.classiccmp.org/dunfield/altair/d/basic.txt.

Main Menu > B	<u>Starts BASIC</u> B
MICRO BASIC COPYRIGHT 1983 BY DAVE DUNFIELD	The sign-on message.
?NO PROGRAM ERROR	There is initially no program, so you get this message.
READY	At the READY prompt, enter your BASIC commands or programs.
EXIT	The EXIT command returns to the monitor.

If you use the CPU card "naked" (no Front Panel or Z80-SIO card), BASIC starts automatically at reset. You'll see a string of dots (....) as it looks for a BASIC program to run. To enter the Monitor instead, hit the M key.

--

There... this should get you going! Read the software manuals and source listings for more details on operation, and how to use the routines in the ZMC monitor for your own programs. Questions? Problems? Go to our user group at https://groups.io/g/Z80MC.

by Richie "Crash" Kernigan - last update 20 May 2025